
Debugging at Scale
Discipline, Magic, Inspiration and Science

Mark O'Connor

mark@allinea.com

Schedule Today
09:00 You, me and a short introduction

10:00 Debugging by Discipline

10:30 Debugging by Magic

11:15 Debugging by Inspiration

12:00 Lunch (or zen meditation, I guess)

13:00 Debugging by Science

13:45 Visually-scalable Profiling

14:30 Q&A

• A modern integrated environment for HPC developers

• Supporting the lifecycle of application development

 and improvement

‒ Allinea DDT : Productively debug code

‒ Allinea MAP : Enhance application performance

• Designed for productivity

‒ Consistent easy to use tools

‒ Enables effective HPC development

• Improve system usage

‒ Fewer failed jobs

‒ Higher application performance

The Allinea Environment

• Graphical debugger designed for:

‒ C/C++, Fortran, MPI, CUDA, SHMEM, UPC

‒Multithreaded code

• Single address space

‒Multiprocess code

• Interdependent or independent processes

‒ Accelerated codes

• GPUs, Intel Xeon Phi

‒ Any mix of the above

• Slash your time to debug :

‒ Reproduces and triggers your bugs instantly

‒ Helps you easily understand where issues come from

quickly

‒ Helps you to fix them as swiftly as possible

Allinea environment 
Fix software problems - fast

Allinea MAP: a new kind of profiling
Get a quick, clear

performance report

No need to instrument,

no need to recompile.

From one process to

tens of thousands.

20Mb output files,

5% slowdown.

Debugging by Discipline
Three techniques,

rigorously applied,

will dramatically

improve your life.

At least, when it's

time to debug.

Discipline 1: Logbook
$ mkdir logs

$ vim logs/segfault-at-4096-procs

When running lu.E.4096 with the trace-4410.dat set,

the job exited with: "An error occurred in MPI_Send

[li346-209:25319] on communicator MPI_COMM_WORLD

MPI_ERR_RANK: invalid rank".

To reproduce: mpiexec -n 4096 lu.W.4096 trace-4410.dat

on supermuc. Seems to happen every time.

* Tried reading core file with gdb, "File truncated"

* Set ulimit -c unlimited and ran again: ...

Exactly what
happened,

including error
messages

How to
reproduce it

Investigation
notes

Discipline 2: Test script

$ logs/segfault-at-4096-procs.sh

Sep 27 15:29: Queued as job.43214

Sep 27 18:01: Running...

Sep 27 19:29: FAIL

1. Compile with debug information: -g -O0

2. Submit the job with the correct inputs

3. Wait for it to run...

4. Check the output for errors

So much can - and will - go wrong!

Instead, spend 2 minutes adapting an existing test

script that does all of this and prints PASS or FAIL:

Discipline 3: Source control
$ hg init

$ vim .hgignore

 syntax: glob

 *.o

 *~

 *.out

 *.err

$ hg status

$ hg add

$ hg commit -m "Switched to single-precision matrices"

 You only need to know four or five commands:

 $ hg add main.c Add a new file

 $ hg commit Save the latest changes

 $ hg log List all previous commits

 $ hg update 3 Update to commit #3

 $ hg revert Abandon current changes

Source files Input files Test scripts Executables Output files

Summary: Discipline
Efficiency comes through preparation. Debugging a problem
is much easier when you can:

1. Track what you've tried so far

 Logbook

2. Reproduce bugs with a single command Test script

3. Make and undo changes fearlessly

 Source control

When these are combined, magical things can happen...

Debugging by Magic
Any technology

sufficiently advanced

is indistinguishable

from magic.

Unpredictable,

dangerous,

irresistible.

Favourite Magical Incantations
Program crashes:

$ ddt -n 512 -offline log.html myprog.exe arg1 arg2

Program deadlocks:

$ ddt -n 512 -start myprog.exe arg1 arg2

Favourite Magical Incantations
Suspected memory bugs:

$ ddt -n 512 myprog.exe arg1 arg2

Protective Magic
Static analysis looks for common mistakes in code:

$ /path/to/ddt/libexec/cppcheck

$ /path/to/ddt/libexec/ftnchek

 (not a typo!)

 Checking cstartmpi.c...

 [cstartmpi.c:172] (error) Memory leak: t2

Also integrated into DDT's GUI and on by default:

Disciplined Magic
A magical servant!

$ hg bisect --bad

$ hg bisect --good 4

$ hg bisect -c logs/my-test.sh

"The current version
has a problem"

"It worked back in
version 4"

Master, you broke it when you committed:

"Switched to single-precision matrices"

Summary: Magic
A good first step - can be a quick and easy way to fix:

Use source control and tests to create a magical servant:

$ hg bisect --bad

$ hg bisect --good 4

$ hg bisect -c logs/my-test.sh

$ hg log -pr <changeset id>

Crashes Deadlock Memory

problems

Bonus - static analysis:

cppcheck / ftncheck

Debugging by Inspiration
Look at the problem,

see the solution.

Vertrauen ist gut,

trust your instincts.

Kontrolle ist besser,

test if they're right

Inspiration: Test your instincts

Check to see if you're right before changing the code:

$ ddt -n 64 -offline log.html -trace-at blas.c:412,rl_x myprog.exe

If your instinct is right, great! If it's wrong, log it:

$ cat >> logs/incorrect-y-merge

 Hypothesis: Negative rl_x in blas.c:412 corrupts the y offset

 Observation: according to -trace-at, rl_x = 4.113 in blas.c:412

"Ah, I bet that's because rl_x is negative, so
then the y offset will be wrong, and ..."

Inspiration: Just look at the problem
Explore the data and program flow in an interactive session:

$ ddt -n 192 -start myprog.exe arg1 arg2

Example: CUDA Dynamic Parallelism

Debugging Dynamic Parallelism

Debugging Dynamic Parallelism

wait, what?

Debugging Dynamic Parallelism

Debugging is About Understanding

• Which values are put into data and when?

• What's the relationship between n and data?

• How many kernels are launched?

What actually
happens here?

Alternative sources of inspiration
1. Explain the problem to

a rubber duck.

2. Search your logbooks:

$ grep -ir blas4a logs/*

segfault-at-4096-procs: Hypothesis: Crash is in blas4a/blas4b

segfault-at-4096-procs: Observation: rank 9 at blas4a.c:145

segfault-at-4096-procs: Fix: Switched to ISend in blas4a and

deadlock-with-openmpi: so the send buffers in blas4a overran.

Summary: Inspiration
When you have a sense for what the problem is:

Test it:
$ ddt -offline log.html -trace-at mmult.c:412,rx,ry,rz

Log it:
$ cat >> logs/short-problem-name

 Suspect rx is out of bounds in mmult.c:412.

 Testing with -trace-at mmult.c:412,rx,ry,rz showed...

Search your logbooks:
 $ grep -ri "out of bounds" logs/*

Talk to a rubber duck.

Tip - set a time limit for debugging by

inspiration. After 15 minutes, try science.

Debugging by Science
1. Hypothesis

2. Prediction

3. Experiment

4. Observation

5. Conclusion

There is a reason for
the bug and you will
find it!

Science: Your logbook
A logbook is at the heart of debugging by science:

hypothesis: cause is in shell_sort()

prediction: At sort.c:6, expect a[] = [11, 4] and size = 2

experiment: -trace-at sort.c:6,a[0],a[1],size

observation: a[] = [11, 14, ?] and size = 3

conclusion: rejected

hypothesis: calling shell_sort with size=3 causes failure

prediction: setting size=2 should make program work

experiment: Set size=2 before call using debugger

observation: As predicted

conclusion: confirmed

Summary: Science

The method works,

but it may not be as
direct as you'd like!

1. Hypothesis

2. Prediction

3. Experiment

4. Observation

5. Conclusion

Discipline, Magic, Inspiration, Science

Thank-you! Questions?
Discipline, Magic, Inspiration and Science

Mark O'Connor

mark@allinea.com

